Chapter 4

RUNOFF TREATMENT AND CONTROL

Reader Notes- Feb. 2019 Draft
Chapter 4 has been reorganized to improve usability and to group topics that are similar in nature. A supplemental organizational matrix lists all organizational changes, and reader notes within this document describe all changes in more detail.

Changes that result in new or modified requirements are shown with the following formatting:
- example to show added text with underlining
- example to show format of deleted text with a strikethrough

Reader Note formatting is also intended to help identify the nature of each change:
- Changes to Standards are identified in the Reader Notes in Bold text.
- Organization Changes to Standards are identified in the Reader Notes in Italicized text.

Text Boxes highlighted white (rather than grey) indicate relocated text with old locations and a reference to the new proposed location.

4.01 General Provisions
 4.01.1 Introduction
 4.01.2 Application and Interpretation of Chapter
 4.01.3 Organization of Chapter

4.02 Water Quantity Control Requirements
 4.02.1 Mitigation Requirement for Quantity
 4.02.2 Criteria for Requiring On-Site Detention

4.03 Hydromodification Requirements
 4.03.1 General
 4.03.2 Hydromodification Assessment Requirement
 4.03.3 Hydromodification Assessment Methodology
 4.03.4 Hydromodification Risk Level Evaluation
 4.03.5 Hydromodification Approach Selection
 4.03.6 Design Considerations
 4.03.7 Criteria for Requiring Implementation of a Hydromodification Approach

4.04 Water Quality Treatment Requirements
 4.04.1 General
 4.04.2 Criteria for Requiring Implementation of a Water Quality Approach
 4.04.3 Required Treatment Design Efficiency
 4.04.4 Design Considerations
4.05 Low Impact Development Approaches (LIDA) Requirements
4.05.1 Purpose
4.05.2 LIDA Design Considerations
4.05.3 LIDA Approvable by the District

4.06 Summary of Water Quality and Quantity Stormwater Management Approaches

4.07 Stormwater Management Approach Design Considerations
4.07.1 Pretreatment
4.07.2 Erosion Protection
4.07.3 Vegetation
4.07.4 Fencing
4.07.5 Walls
4.07.6 Access
4.07.7 Maintenance Responsibilities
4.07.8 Proprietary Treatment Systems
4.07.9 Underground Detention

4.08 Stormwater Management Approach Sizing
4.08.1 Impervious Area Used in Design
4.08.2 Storm Events Used in Design
4.08.3 Infiltration in LIDA Design
4.08.4 Simplified LIDA Sizing
4.08.5 Water Quality Approach Standard LIDA Sizing methods
4.08.6 Peak-Flow Matching Hydraulic Design Criteria
4.08.7 Flow Duration Curve Hydraulic Design Criteria

4.09 Water Quality Stormwater Management Approach Design Standards
4.09.1 Water Quality Manholes
4.09.2 Detention Pond
4.09.3 Underground Detention
4.09.4 Vegetated Swale
4.09.5 Extended Dry Basin
4.09.6 Constructed Water Quality Wetland
4.09.7 Structural Infiltration Planter
4.09.8 Non-Structural Infiltration Planter (Rain Garden)
4.09.9 Flow-Through Planter
4.09.10 LIDA Swale
4.09.11 Street-Side Planter
4.09.12 Landscape Filter Strip
4.09.13 Vegetated Corridor as a Filter Strip
4.09.14 Green Roofs
4.09.15 Porous Pavement
4.09.16 Stormwater Tree
4.09.17 Structural Soils
4.01 General Provisions

4.01.1 Introduction

The purpose of this chapter is to outline design requirements for storm and surface water management related to water quality, water quantity, hydromodification, and Low Impact Development Approaches (LIDA). The provisions of this chapter are intended to prevent or reduce adverse impacts to the drainage system and water resources of the Tualatin River Basin.

4.01.2 Application and Interpretation of Chapter

a. The provisions of this chapter shall apply to all development projects within District and City jurisdiction. Interpretations of such provisions and their application in specific circumstances shall be made by the District and City.

b. Any City operating a local program may adopt stricter design specifications within its jurisdiction than the specifications stated in this chapter.

c. Where District and City standards conflict, the District’s standards shall apply.

d. The use of development techniques that mimic natural systems, including Low Impact Development Approaches (LIDA) and green infrastructure, shall be emphasized.

4.01.3 Organization of Chapter

The organization of this Chapter is intended to follow the site evaluation and design process, as described below:

a. Sections 4.01 - 4.05
 The beginning sections of this Chapter describe the stormwater management requirements that are applicable for a project.

b. Section 4.06
 The middle of this Chapter provides and overview of stormwater
management approaches that may be used on a project to meet stormwater management requirements.

c. **Section 4.07- 4.09**
The end of this Chapter describes sizing and design criteria for each stormwater management facility or approach.

Relocated Text- Feb. 2019 Draft
4.02 General Requirements
The entirety of the former Section 4.02 moved to Section 4.07.

Reader Notes- Feb. 2019 Draft
Organizational Change- Section numbers updated, no change to requirements.

4.0302 Water Quantity Control Requirements

4.0302.1 Mitigation Requirement for Quantity

Each new development shall incorporate techniques for mitigating its impacts on the public stormwater system in accordance with Section 5.05. The District or City shall determine which of the following techniques may be used to satisfy this mitigation requirement.

a. Construction of permanent on-site stormwater quantity detention facilities designed in accordance with this Chapter; or

b. Enlargement or improvement of the downstream conveyance system in accordance with this Chapter and Chapter 5; or

c. Payment of a Storm and Surface Water Management System Development Charge (SWM SDC), as provided in CWS Ordinance 28, which includes a water quantity component to meet these requirements.

4.0302.2 Criteria for Requiring On-Site Detention

a. If District or City requires that an on-site detention facility be constructed, the development shall be eligible for a credit against SWM SDC fees, as provided in District Ordinance and Rules.

b. On-site facilities shall be constructed when any of the following conditions exist:

1. There is an identified downstream deficiency, and the District or City determines that detention rather than conveyance system enlargement is the more effective solution.
2. There is an identified regional detention site within the boundary of the development.

3. Water quantity facilities are required by District-adopted watershed management plans or adopted subbasin master plans or District approved subbasin strategy.

4.03 Hydromodification Approach Requirements

4.03.1 General

Owners of new development and other activities which create and/or modify 1,000 square feet or greater of impervious surface, or increase the amount of flow leaving a site, are required to incorporate techniques for mitigating impacts to the downstream receiving water body. The following techniques may be used to satisfy this mitigation requirement:

a. Construction of permanent LIDA designed in accordance with this Chapter; or

b. Construction of a permanent stormwater detention facility designed in accordance with this Chapter; or

c. Construction or funding of a hydromodification approach that is consistent with a District approved subbasin strategy; or

d. Payment of a Hydromodification Fee-In-Lieu.

4.03.2 Hydromodification Assessment Requirement

Unless specifically waived in writing by the District, a Hydromodification Assessment is required of all activities described in Section 4.03.1, unless the activity meets any of the following criteria:
a. The project results in the addition and/or modification of less than 12,000 square feet of impervious surface.

b. The project is located in an area with a District approved subbasin strategy with an identified regional stormwater management approach for hydromodification.

4.03.3 Hydromodification Assessment Methodology

A Hydromodification Assessment is necessary to determine the Hydromodification Risk Level, Development Class, and Project Size Category. These three parameters are used to determine the Hydromodification Approach requirement for a project.

A Hydromodification Map is published on the District’s website to assist with the assessment, and below is the methodology for determining each parameter:

a. Hydromodification Risk Level

1. Locate the Project Site on the Hydromodification Map.

2. Determine the Point of Discharge by evaluating the existing or proposed surface water conveyance system, and find the location where flows outfall to a Sensitive Area. If the Sensitive Area is a wetland or pond, continue to follow the flow path to the point that it reaches a stream. The Point of Discharge is the location where flows enter a stream. If a project drains in more than one direction, each drainage basin and Point of Discharge is evaluated independently.

3. Identify the Receiving Reach, which is the section of stream that begins at the Point of Discharge and extends along the centerline of the stream for ¼ mile downstream from the Point of Discharge.

4. Determine the Hydromodification Risk Level of the Receiving Reach by using either of the following two methods:

A) Locate the Receiving Reach on the Hydromodification Map and use the Map Key to determine the mapped Hydromodification Risk Level. If the Receiving Reach includes more than one Hydromodification Risk Level, select the highest level.

B) If the applicant, City, or District identifies additional Receiving Reach conditions that may result in a different Risk Level than is identified on the Hydromodification Map, conduct a site
specific evaluation of the Receiving Reach in accordance with
Hydromodification Risk Level Evaluation described in Section
4.03.4.

5. Use the result of Section 4.03.3.(a)(4) above to identify the
Hydromodification Risk Level, which will be one of the following
categories:

A) High
B) Moderate
C) Low

b. Development Class

1. Locate the Project Site on the Hydromodification Map.

2. Determine the Development Class at the location of the Project Site
by using either of the following two methods:

A) Locate the Project Site on the Hydromodification Map and use
the Map Key to determine the Development Class.

B) Identify the date that the Project Site was incorporated by
Metro into the Urban Growth Boundary. For the purposes of
the Hydromodification Assessment, projects added prior to
2011 are classified as Developed Area and projects added
after 2011 are classified as Expansion Area.

3. Use the result of Section 4.03.3.(b)(2) above to identify the
Development Class, which will be one of the following categories:

A) Developed Area
B) Expansion Area
c. Project Size Category

1. The Project Size Category is determined by calculating the area of proposed new and/or modified impervious surface. Calculate this area using the methodology described in Section 4.08.1.

2. Use the results to identify the Project Size Category, which will be one of the following:

 A) Small: 1,000 to 12,000 square feet
 B) Medium: 12,000 to 80,000 square feet
 C) Large: 80,000 square feet and larger

4.03.4 Hydromodification Risk Level Evaluation

An applicant may choose to either identify the Hydromodification Risk Level using the Hydromodification Map, as described in Section 4.03.3, or by conducting a site evaluation of the Receiving Reach to determine the factors below:

a. Stream Gradient

 Determine the longitudinal slope of the Receiving Reach using one of the following methods:

1. Field Methodology: Measure the slope of the stream along the deepest part of the channel within the Receiving Reach at 50 feet intervals. Determine the channel slope for each interval. Use the average slope of the steepest three segments to determine the Hydromodification Risk Level.

2. Desktop Methodology: Determine of the slope of the stream channel along the centerline, using current LiDAR bare earth model, within the Receiving Reach at 50 foot intervals. Determine channel slope for each interval, and use the average slope of the steepest three segments to determine the Hydromodification Risk Level.
b. **Stream Bank Height Ratio:**

Measure the height difference between the toe of the streambank and the top of the streambank (measurement A), and the toe of the streambank and ordinary high water (“bankfull”; measurement B). Take measurements beginning at the upstream limit of the Receiving Reach and repeat at 100 foot increments throughout the Receiving Reach. Calculate Bank Height Ratio as A/B for each 100 foot increment. Use the average of the three highest values to determine Hydromodification Risk Level.

c. **Valley Confinement:**

Determine the proportion of area adjacent and within 135 feet laterally of the stream (“adjacent land” in Table 4-1) that is confined by steep (>25%) or moderately steep (10-25%) slopes using the current LiDAR bare earth digital elevation model.

d. **Landslide Susceptibility:**

Determine the Landslide Susceptibility of land adjacent and within 135 feet laterally of the stream (“adjacent land” in Table 4-1) using one of the following methods:

1. **Desktop Methodology:** Using the current landslide susceptibility map issued by the Oregon Department of Geology and Mineral Industries, determine landslide susceptibility within 135 feet laterally of the stream in the Receiving Reach. Polygons that are less than 1,000 sq. ft. in area may be ignored.

2. **Field Methodology:** A site specific evaluation can be made by a Certified Engineering Geologist or a Geotechnical Engineer that the area within 135 feet laterally of the stream in the Receiving Reach contains no locations susceptible to slope failure under current climatic and land cover conditions. The evaluation must describe how changes in the condition or pattern of land cover, drainage, or vertical or lateral channel migration or inundation would affect slope stability within the Receiving Reach.

e. **Hydromodification Risk Level:**

Identify the Hydromodification Risk Level associated with each factor in Table 4-1 below. If there is more than one Hydromodification Risk Level, select the highest level from the Table to represent the Receiving Reach.
TABLE 4-1
SITE-SPECIFIC ANALYSIS FOR HYDROMODIFICATION RISK LEVEL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Gradient</td>
<td>< 2%</td>
<td>2% - 4%</td>
<td>> 4%</td>
</tr>
<tr>
<td>Bank Height Ratio</td>
<td>< 1.2</td>
<td>1.2 - 1.4</td>
<td>> 1.4</td>
</tr>
<tr>
<td>Valley Confinement</td>
<td>50% or less of the Receiving Reach and adjacent land has land surface slopes exceeding 10%.</td>
<td>More than 50% of the Receiving Reach and adjacent land has land surface slopes that exceed 10%.</td>
<td>More than 50% of the Receiving Reach and adjacent land has land surface slopes that exceed 25%.</td>
</tr>
<tr>
<td>Landslide Susceptibility</td>
<td>No portion of the Receiving Reach and adjacent land is mapped as “moderate”, “high” or “very high” landslide susceptibility.</td>
<td>Any portion of the Receiving Reach and adjacent land is mapped as “moderate”, and no areas are mapped as “high” or “very high” landslide susceptibility.</td>
<td>Any portion of the Receiving Reach and adjacent land is mapped as “high” or “very high” landslide susceptibility.</td>
</tr>
</tbody>
</table>

4.03.5 Hydromodification Approach Selection

Using the results of the Hydromodification Assessment described in Section 4.03.3, determine the corresponding project category from Table 4-2 below.

TABLE 4-2
HYDROMODIFICATION APPROACH PROJECT CATEGORY TABLE

<table>
<thead>
<tr>
<th>Development Class/ Hydromodification Risk Level</th>
<th>Small Project 1,000 – 12,000 SF</th>
<th>Medium Project 12,000 – 80,000 SF</th>
<th>Large Project > 80,000 SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion/High</td>
<td>Category 1</td>
<td>Category 3</td>
<td>Category 3</td>
</tr>
<tr>
<td>Expansion/ Moderate</td>
<td></td>
<td>Category 2</td>
<td></td>
</tr>
<tr>
<td>Expansion/ Low</td>
<td></td>
<td>Category 3</td>
<td></td>
</tr>
<tr>
<td>Developed/ High</td>
<td></td>
<td>Category 2</td>
<td></td>
</tr>
<tr>
<td>Developed/ Moderate</td>
<td></td>
<td>Category 3</td>
<td></td>
</tr>
<tr>
<td>Developed/ Low</td>
<td></td>
<td>Category 2</td>
<td></td>
</tr>
</tbody>
</table>
The stormwater management options associated with each project category are described below:

a. **Category 1**
 Projects in Category 1 represent those with the lowest anticipated risk. Any of the following options may be used to address hydromodification:
 1. Infiltration LIDA, using the Simplified LIDA Sizing, as described in Section 4.08.4, or
 2. Payment of a Hydromodification Fee-In-Lieu in accordance with District Rates and Charges.

b. **Category 2**
 Projects in Category 2 represent those with a moderate anticipated risk. Any of the following options may be used to address hydromodification:
 1. Infiltration LIDA, using the Standard LIDA Sizing, described in Section 4.08.5; or
 2. Peak Matched Detention, using design criteria described in Section 4.08.6; or
 3. Combination of Infiltration LIDA and Peak Matched Detention, using criteria described in Section 4.08.5 and 4.08.6.

c. **Category 3**
 Projects in Category 3 represent those with the highest anticipated risk. Any of the following options may be used to address hydromodification:
 1. Combination of Peak Matched Detention and LIDA:
 A) Peak Matched Detention using the design criteria described in Section 4.08.6, and
 B) Manage 30% of the new and modified impervious area using any LIDA in Table 4-3, and designed using Section 4.09; or
 2. Flow Duration Curve Matched Detention, using the sizing methodology described in Section 4.08.7.
4.03.6 Design Considerations

a. Site design which includes a combination of more than one stormwater management approach (e.g., detention pond and infiltration LIDA) may be used to reduce the size of any one individual facility.

b. Site design which reduces the amount of new and modified impervious surface may be used as a strategy to reduce the size of LIDA and/or detention facilities.

c. An alternate hydromodification approach may be permitted, if it can be demonstrated to the satisfaction of the District to meet the requirements of this Chapter.

4.03.7 Criteria for Requiring Implementation of a Hydromodification Approach

a. A Hydromodification Approach shall be implemented unless any of the following conditions exist:

1. The result of Section 4.03.5 includes the option for Fee-In-Lieu; or

2. The project is located within a District approved sub-basin strategy area, and implementation of an approach is not a requirement of the development; or

In the judgement of the District any of the following conditions exist:

3. Due to topography, soils, landslide risk, or other site conditions, implementation of an on-site hydromodification approach is impractical or ineffective. The District may require a site-specific analysis (e.g., infiltration testing, geotechnical evaluation) to support such a determination; or

4. On-site implementation results in the inefficient use of District or City resources for long-term operations and maintenance.

b. If construction or implementation of a hydromodification approach is not required as a result of meeting any condition outlined in Section 4.03.7.a, the Owner of the development shall pay a Fee-In-Lieu of construction or implementation of a hydromodification approach in accordance with District Rates and Charges.

Relocated Text- Feb. 2019 Draft
4.04 Water Quantity Facility Design Standards
The entirety of Section 4.04 moved to Section 4.09.2.
4.054 Water Quality Treatment Requirements

4.054.1 General

Owners of new development and other activities which create or modify 1,000 square feet or greater of impervious surfaces, or increase the amount of stormwater runoff or pollution leaving the site, are required to implement or fund permanent water quality approaches to reduce contaminants entering the storm and surface water system.

4.054.2 Criteria for Requiring Implementation of a Water Quality Approach

a. A water quality approach shall be implemented on-site unless, in the judgment of the District or City, any of the following conditions exist:

 1. Due to topography, soils or other site conditions, implementation of an on-site approach is impractical, ineffective or results in the inefficient use of District or City resources for long-term operations and maintenance; or

 2. There is a more efficient and effective regional approach within the subbasin that was designed to incorporate the development, or there is an approach in the subbasin which is demonstrated to have the capacity to treat the site.

b. If construction or implementation of a water quality approach is not required as a result of meeting any condition outlined in Section 4.04.2, the Owner of the development shall pay a Fee-In-Lieu of construction or implementation of Water Quality Approaches in accordance with District Rates and Charges.

4.054.3 Required Treatment Design Efficiency

a. Stormwater quality approaches shall be designed to remove 65 percent of the total phosphorous from the runoff from the impervious area that is tributary to the facility.

b. The phosphorous removal efficiency specifies only the design requirements and is not intended as a basis for performance evaluation or compliance.
determination of the stormwater quality control approach installed or constructed pursuant to this Chapter.

c. The following approaches are available for meeting the treatment design efficiency standard in this section:

1. Pretreatment as specified in Section 4.05.74.07.1 in combination with one of the following vegetated water quality LIDA:
 A) Vegetated Swale
 B) Extended Dry Basin
 C) Constructed Water Quality Wetland
 D) Structural Infiltration Planter
 E) Non-structural Infiltration Planter (rain garden)
 F) Flow-through Planter
 G) LIDA Swale
 H) Street-Side Planter
 I) Landscape Filter Strip
 J) Vegetated Corridor as a Filter Strip

2. Proprietary treatment systems meeting the requirements of Section 4.05.84.07.8.

3. Alternative water quality approaches that can be demonstrated, to the satisfaction of the District, to meet the removal efficiency standard in this section.

4.0504.4 Design Considerations

a. If an onsite water quality approach cannot be constructed or implemented to treat the runoff from the development’s impervious surface, then with District or City approval, an on- or off-site water quality approach may be designed to treat runoff from an equivalent area of existing untreated impervious surfaces.

b. Approaches shall be designed so that flow from the development is treated off-line from the storm conveyance system and reconnected to upstream flows following treatment. If an off-line approach is not feasible, additional capacity in the approach may be required for upstream flow.

c. Discharges to sensitive areas shall maintain the hydro period and flows of pre-development site conditions to the extent necessary to protect the characteristic functions of the sensitive area. Conversely, discharge of flows that may be critical to downstream water quality sensitive areas into other catchments will not be permitted unless addressed in the applicant’s Service Provider Letter.
4.075 Low Impact Development Approaches (LIDA) Requirements

4.075.1 Purpose

The advantages of LIDA continue to be documented for providing pollutant reduction associated with urban development. Generally, the first priority for LIDA is to conserve existing resources and minimize stormwater runoff generated from urban development to mimic natural hydrologic processes.

Selection of appropriate LIDA, including surface infiltration, should ensure there are no adverse downstream drainage impacts and an appropriate maintenance program can be developed to sustain the functionality of the LIDA.

4.075.2 LIDA Design Considerations

Through conservation of natural resources, minimization of impervious surface, and mimicking natural hydrologic processes, each development shall reduce its hydrologic impacts through approaches described in Section 4.07.34.05.3, unless any of the following criteria apply:

a. Due to topography, soils or other site conditions, implementation of an onsite approach is impractical or inefficient.

b. Stormwater quality treatment is being provided by a regional approach.

c. The hydromodification and water quality treatment requirements are being met through a Fee-In-Lieu in accordance with Section 4.05.2.b, 4.03.7.b and 4.04.2.b.

4.075.3 LIDA Approvable by the District

a. Vegetated water quality treatment as specified in Section 4.05.3.c.1.
b. Vegetated Corridor preservation and enhancement consistent with the Service Provider Letter issued for the project.

c. Green roofs and green walls.

d. Pervious surfaces such as porous pavement and boardwalks.

e. On-site tree preservation when protecting significant habitat or as a result of City or County plans, programs or requirements.

f. Rainwater catchment and harvesting systems for re-use.

g. When approved by the District or City, other approaches that provide stormwater infiltration, evapotranspiration, runoff reuse, or otherwise mimic natural hydrologic processes.
4.06 Summary of Water Quality and Quantity Stormwater Management Approaches

Table 4-2-3 shows the approaches the District may approve to meet the requirements of this Chapter and when these approaches can be used in a publicly maintained system.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Public System</th>
<th>Water Quantity Control Approach</th>
<th>Hydromodification Approach</th>
<th>Water Quality Treatment Approach</th>
<th>Low Impact Development Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltration Planter/Rain Garden</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Flow-through Planter</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>LIDA Swale</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Landscape Filter Strip</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Vegetated Swale</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Extended Dry Basin</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Constructed Water Quality Wetland</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vegetated Corridor as a Filter Strip</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Proprietary Treatment System Per 4.05.8</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Vegetated Corridor Preservation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Green Roof</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Porous Pavement</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Tree Preservation Stormwater Tree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Structural Soils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Detention Pond</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Underground Detention</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Boardwalk</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
4.07 Stormwater Management Approach Design Considerations

4.07.1 Pretreatment

a. Pretreatment Required

Unless approved by the District, flow from impervious surfaces to water quality approaches shall not be allowed without pretreatment or as specified in the design criteria for specific approaches in Section 4.06.09. Incoming flows to the water quality approach shall be pretreated using a water quality manhole in accordance with Subsection 4.06.14.09.1 or as specified within the design criteria for specific approaches. Other pretreatment methods such as proprietary devices, filter strip, or trapped catch basin may be approved by the District or City.

b. Proprietary Pre-Treatment Devices

1. The use of proprietary pre-treatment devices shall be permitted on a case by case basis with approval by the District or City.

2. The devices will be sized in accordance with the manufacturer’s recommendations; however, the minimum treatment flow must be the water quality flow.

3. Technical submittals from the manufacturer are required, including hydraulic design criteria, particulate removal efficiency, and maintenance requirements and schedule.

4.07.2 Erosion Protection

a. Inlets to water quality and quantity approaches shall be protected from erosive flows through the use of an energy dissipater or riprap stilling basin of appropriate size based on flow velocities. Flow shall be evenly distributed across the treatment area.

b. All exposed areas used for water quality treatment and/or quantity management shall be protected using coconut matting or District approved alternative. Matting shall be used in the treatment area of swales and below the water quality volume levels of ponds, and all other zones.
4.07.3 Vegetation

a. Except as specified in Section 4.08-4.09 or the LIDA Handbook, vegetation shall be in accordance with Appendix A: Planting Requirements.

b. No invasive species shall be planted or permitted to remain within an area used for water quality treatment or water quantity management which may affect its function, including, but not limited to invasive species identified in the most current version of the District’s Integrated Pest Management Plan.

4.07.4 Fencing

a. Unless otherwise approved by the District or City, delineation fencing shall be required around facilities and/or tracts containing facilities.

b. When a public facility is fenced, the fence shall be 4-foot high, vinyl-clad chain link fence conforming to CWS Standard Drawing No. 740. The fence shall include a 12-foot wide lockable gate for maintenance access conforming to CWS Standard Drawing No. 740.

c. If a facility is located adjacent to a Vegetated Corridor, wildlife friendly fencing shall be utilized.

d. If, in the opinion of the District or City, risk of damage to the facility and/or public safety is minimal, split rail fencing, dense vegetated hedges, or other approved method may be used to delineate the facility boundary. Fencing or similar barriers which blend into the surrounding neighborhood or site may be used, to the extent that they do not impede maintenance access or increase operation and maintenance costs to the District or City.

4.07.5 Walls

a. Retaining walls may serve as pond walls if the design is prepared and stamped by a registered professional engineer and a fence is provided along the top of the wall. At least 25% of the pond perimeter shall be vegetated to a side slope of 3H:1V or flatter.
b. Walls are not allowed in the treatment areas of any water quality approach.

c. Walls that are 4 feet or higher, or that are periodically inundated, shall meet all of the following criteria:

1. Be approved by a licensed structural or geotechnical engineer; and

2. The District shall not have maintenance responsibility for the wall. The party responsible for maintenance of the walls within the tract or easement shall be clearly documented on the plat or in alternate form as approved by the District.

Reader Notes- Feb. 2018 Draft

Organizational Change- The majority of this Section was moved from Section 4.02.

Standards Change- Addition of the word “sumped” to clarify that access is required to sumped structures in particular.

4.07.6 Access

a. General Access Requirement

Unless otherwise approved by the District or City, access roads shall be provided for maintenance of all water quality and quantity facilities. The following criteria are considered to be the minimum required for facilities maintained by the District or Cities. Other permitting jurisdictions may have more restrictive requirements. If the design Engineer anticipates that any of the requirements will not be met due to the configuration of the proposed development, the design Engineer is advised to meet with District or City staff to gain approval for the deviation prior to submittal.

b. Standard Road Design

1. The road section shall be three (3) inches of class “C” asphaltic concrete; over two (2) inches of ¾”-0” compacted crushed rock; over six (6) inches of 1½”-0” compacted crushed rock; over subgrade compacted to 95-percent AASHTO T-99; or, the design Engineer may submit an alternate design certified as capable of supporting a 30-ton maintenance vehicle in all weather conditions.

2. Strengthened sidewalk sections shall be used where maintenance vehicles will cross.

3. Maximum grade shall be 10-percent with a maximum 3-percent cross-slope.
4. Minimum width shall be 12 feet on straight runs and 15 feet on curves.

5. Curves shall have a minimum 40-foot interior radius.

6. Access shall extend to within 10-feet of the center of all sumped structures unless otherwise approved by the District or City.

7. The District or City may require a curb or other delineator at the edge of the road for drainage, a curb stop, or to demarcate the road where the road edge is not apparent.

8. The side slope for road embankments shall be 2H:1V or flatter.

9. A vehicle turnaround shall be provided when the access road exceeds 40’ in length.

c. Alternate Access Road

An alternate access road design meeting the requirements of this section may be approved by the District or City for facilities in which access is required for general maintenance and long term care of the facility, but where there is no structure, as determined by the District or City, requiring regular maintenance.

1. The road section shall meet the requirements of 4.02.4(b)(1) or an alternate section certified as capable of supporting AASHTO HS-20 loading.

2. As an alternative to the requirements of 4.02.4(e)(1), a concrete grid paver surface may be constructed by removing all unsuitable material, laying a geotextile fabric over the native soil, placing a structural border and pavers, filling the honeycombs/grids with soil, and planting appropriate grasses.

3. Strengthened sidewalk sections shall be required where maintenance vehicles will cross.

4. Maximum grade shall be 20-percent with a maximum 3-percent cross-slope.

5. Minimum finished width shall be 12 feet.

6. The District or City may require a curb or other delineator at the edge of the road for drainage, a curb stop, or to demarcate the road where the road edge is not apparent.
7. The side slope for road embankments shall be 2H:1V or flatter.

8. A vehicle turnaround shall be provided when the access road exceed 40’ in length.

4.07.7 Maintenance Responsibilities

a. Unless otherwise approved by the District, newly constructed water quality or quantity approaches serving multiple parcels or public roads shall be publicly maintained.

b. Publicly maintained water quality or quantity approaches shall be covered by a surface and stormwater management easement dedicated to the District or City. The District or City shall also be granted an access easement to maintain the approaches. The District will typically not own the land the approach is on.

c. Unless otherwise approved by the District or City, development creating multiple parcels intended for separate ownership shall enclose the publicly maintained water quality and quantity approaches in a tract.

d. Unless otherwise approved by the District or City, private water quality and quantity approaches shall be maintained by the Owner.

4.07.8 Proprietary Treatment Systems

a. Proprietary treatment systems shall meet the removal efficiency requirement defined in Section 4.05.34.04.3(a) and be approved by the District for use in the situations identified in Subsection (c) below.

b. Maintenance
 1. Proprietary treatment systems shall be maintained by the District or Cities except those systems used in the situations specified in Section 4.05.84.07.8(c)(1) and (2) below.
 2. Proprietary systems require a long-term maintenance plan identifying maintenance techniques, schedule, and responsible parties. This maintenance plan shall be submitted and approved with the drainage report for a project.

c. Proprietary treatment systems shall be allowed in situations meeting one of the following criteria:

 1. Treatment of runoff from a single parcel.
 2. Treatment of runoff from an adjoining commercial, industrial, or multi-family, or condominium parcels which share a common
parking lot.

3. Treatment of runoff from new and expanded collector and arterial roadways where no other opportunities exist for treatment without necessitating the removal of homes or businesses.

4. Treatment of runoff from new developments in transit-oriented or similar high-density zoning classifications where the development is primarily single-family residential and the average lot size is less than 2,500 square feet.

5. Treatment of runoff as part of a master planned regional facility approved by the District.

Reader Notes- Feb. 2018 Draft
Standards Change- District is continuing to evaluate, and discuss with member jurisdictions, the potential for expanded use of underground detention.

4.07.9 Underground Detention

Reader Notes- Feb. 2019 Draft
Organizational Change- Information moved from Section 4.05.5.
Standards Change- New sizing criteria for Hydromodification.

4.08 Stormwater Management Approach Sizing

4.05.08.51 Impervious Area Used In Design

The following apply for development which creates or modifies 1,000 square feet or greater of impervious surface. Development which results in both new and modified impervious surface will result in a combined treatment stormwater management requirement, as described below:

a. For new home construction on a single family or duplex lot of record the water quality stormwater management approach shall be sized based on 2,640 square feet of impervious surface per dwelling unit. The actual impervious surface may be utilized when the lot size is less than 2,000 square feet, or the development creates or modifies impervious surface not associated with new home construction, up to a maximum of 2,640 square feet.

b. For single family and duplex residential partitions and subdivisions, stormwater quality management approaches shall be sized for all impervious area created by the development and for all existing impervious area proposed to remain on site. All existing and proposed residences on individual lots shall be sized at the rate of 2,640 square feet of impervious surface area per dwelling unit. For the purpose of design calculations, the actual impervious surface can be utilized as an alternative to 2,640 square feet.
feet per dwelling unit when the average lot size on a single-family residential project is less than 2,000 square feet.

c. For all developments other than single family and duplex, including row houses and condominiums, the stormwater quality approaches shall be sized based on the following:

1. **Quality:**

 To treat all All new impervious surfaces and three times the modified impervious surface, up to the total existing impervious surface on the site. The area requiring treatment is shown in the formula below:

 \[
 \text{Treatment} = \text{New Impervious} + 3(\text{Modified Impervious})
 \]

 When modification results in the permanent removal of 1,000 square feet or greater of impervious surface, the treatment approach shall be sized for three times the replaced impervious surface, in addition to the new impervious surface. In this case, the area requiring treatment is shown in the formula below:

 \[
 \text{Treatment} = \text{New Imp.} + 3(\text{Modified Imp.} - \text{Permanently Removed Imp.})
 \]

 Impervious areas shall be determined based upon building permits, construction plans, or other appropriate methods of measurement deemed reliable by District and/or City.

2. **Quantity and Hydromodification:**

 Actual new and modified impervious surface, up to the total existing impervious surface on the site.

Reader Notes- Feb. 2019 Draft

Organizational Change- Water Quality Design Storm moved from Section 4.05.4, and 24-hour rainfall events relocated from Appendix B, Drawing No. 1280. No change to requirements.

4.08.2 Storm Events Used in Design

a. **Design storms to be used in Water Quality evaluation is:**

 Stormwater quality approaches shall be designed for a dry weather storm event totaling 0.36 inches of precipitation falling in 4 hours with an average storm return period of 96 hours.
b. Design storms to be used in Peak Flow hydrologic analysis are:

<table>
<thead>
<tr>
<th>Recurrence Interval</th>
<th>Total 24-Hour Precipitation Depth (water equivalent inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-year</td>
<td>2.5</td>
</tr>
<tr>
<td>5-year</td>
<td>3.10</td>
</tr>
<tr>
<td>10-year</td>
<td>3.45</td>
</tr>
<tr>
<td>25-year</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Reader Notes - Feb. 2019 Draft
Standards Change - The entirety of Section 4.08.3 is new and added for the purpose of sizing infiltration based hydromodification approaches.

4.08.3 Infiltration in LIDA Design

a. For purposes of sizing infiltration-based LIDA, the following apply:

1. Soil data should be obtained from either:
 A) Soil series data as mapped on WebSoil Survey
 [https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm],
 containing NRCS data. The more common soil series within
 the District, and key data for design purposes, are listed in
 Table 4-SOIL.
 B) Onsite infiltration tests at multiple locations (1 per ¼ acre or 1
 per 2 proposed infiltration-based facilities, as needed to
 support facility design), performed at the depth of the base of
 the infiltrating LIDA facility.

2. Where required, infiltration testing of native soil shall use either
 open pit or encased falling head infiltration methods, or a double-
 ring infiltrometer. For medium and large projects, these tests must
 be performed by a qualified civil engineer (PE) or certified
 engineering geologist (CEG). A factor of safety of 2 shall be used.

3. The following conditions will be assumed to preclude infiltration,
 and will require appropriate documentation of site conditions:
 A) “High” or “very high” landslide susceptibility. (Note: areas
 with moderate landslide susceptibility require dispersed
 infiltration unless accompanied by a geotechnical report
 describing conditions under which infiltration can be safely
 implemented.)
B) Depth to seasonal high groundwater, persistent restrictive layer, or competent bedrock < 36 inches below ground surface.

C) Presence of subsurface contamination, such as would be documented in a “no further action” determination following site cleanup or listing as an active cleanup site by Oregon Department of Environmental Quality.

D) Slopes across the site >25%. (Note: slopes consistently across the site ≥15% but ≤25% require dispersed infiltration unless accompanied by a geotechnical report describing conditions under which infiltration can be safely implemented.)

E) Conditions which would, in the opinion of the district, result in inappropriate lot-to-lot drainage conditions.
<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Hydrologic Group</th>
<th>Drainage Class</th>
<th>Depth to Restrictive Layer (inches)</th>
<th>Depth to Groundwater (inches)</th>
<th>Native Soil Infiltration Rates For Simplified Sizing (inches/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloha silt loam</td>
<td>C/D</td>
<td>somewhat poorly drained</td>
<td>>80</td>
<td>18-24</td>
<td>0.2</td>
</tr>
<tr>
<td>Amity silt loam</td>
<td>C/D</td>
<td>somewhat poorly drained</td>
<td>>80</td>
<td>6-18</td>
<td>0.2</td>
</tr>
<tr>
<td>Briedwell stony silt loam</td>
<td>B</td>
<td>well drained</td>
<td>25</td>
<td>>80</td>
<td>2</td>
</tr>
<tr>
<td>Cascade silt loam</td>
<td>C</td>
<td>somewhat poorly drained</td>
<td>20-30*</td>
<td>18-30</td>
<td>0.5</td>
</tr>
<tr>
<td>Cascade-Urban complex</td>
<td>C</td>
<td>somewhat poorly drained</td>
<td>20-30</td>
<td>18-30</td>
<td>0.5</td>
</tr>
<tr>
<td>Chehalis silt clay loam</td>
<td>B</td>
<td>well drained</td>
<td>>80</td>
<td>48-80</td>
<td>2</td>
</tr>
<tr>
<td>Cornelius & Kinton silt loams</td>
<td>C</td>
<td>moderately well drained</td>
<td>30-40*</td>
<td>27-37</td>
<td>0.5</td>
</tr>
<tr>
<td>Cornelius variant silt loam</td>
<td>C</td>
<td>moderately well drained</td>
<td>30-40*</td>
<td>27-37</td>
<td>0.5</td>
</tr>
<tr>
<td>Cove clay</td>
<td>D</td>
<td>poorly drained</td>
<td>>80</td>
<td>0-12</td>
<td>0.1</td>
</tr>
<tr>
<td>Cove silt clay loam</td>
<td>D</td>
<td>poorly drained</td>
<td>>80</td>
<td>0-12</td>
<td>0.1</td>
</tr>
<tr>
<td>Dayton silt loam</td>
<td>D</td>
<td>poorly drained</td>
<td>0-24</td>
<td>0-24</td>
<td>0.1</td>
</tr>
<tr>
<td>Delena silt loam</td>
<td>D</td>
<td>poorly drained</td>
<td>20-30*</td>
<td>0-18</td>
<td>0.1</td>
</tr>
<tr>
<td>Helvetia silt loam</td>
<td>C</td>
<td>moderately well drained</td>
<td>>80</td>
<td>36-72</td>
<td>0.5</td>
</tr>
<tr>
<td>Hillsboro loam</td>
<td>B</td>
<td>well drained</td>
<td>>80</td>
<td>>80</td>
<td>2</td>
</tr>
<tr>
<td>Huberly silt loam</td>
<td>C/D</td>
<td>poorly drained</td>
<td>38*</td>
<td>0-8</td>
<td>0.2</td>
</tr>
<tr>
<td>Laurelwood silt loam</td>
<td>B</td>
<td>well drained</td>
<td>>80</td>
<td>>80</td>
<td>2</td>
</tr>
<tr>
<td>McBee silt clay loam</td>
<td>C</td>
<td>moderately well drained</td>
<td>>80</td>
<td>24-36</td>
<td>0.5</td>
</tr>
<tr>
<td>Quatama loam</td>
<td>C</td>
<td>moderately well drained</td>
<td>>80</td>
<td>24-36</td>
<td>0.5</td>
</tr>
<tr>
<td>Saum silt loam</td>
<td>C</td>
<td>well drained</td>
<td>20-30*</td>
<td>18-30</td>
<td>0.5</td>
</tr>
<tr>
<td>Urban land</td>
<td></td>
<td></td>
<td>Not specified; site-specific infiltration testing required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verboort silt clay loam</td>
<td>D</td>
<td>poorly drained</td>
<td>12-26</td>
<td>0-8</td>
<td>0.1</td>
</tr>
<tr>
<td>Wanata silt clay loam</td>
<td>C/D</td>
<td>poorly drained</td>
<td>>80</td>
<td>0-12</td>
<td>0.2</td>
</tr>
<tr>
<td>Williamette silt loam</td>
<td>B</td>
<td>well drained</td>
<td>>80</td>
<td>>80</td>
<td>2</td>
</tr>
<tr>
<td>Woodburn silt loam</td>
<td>C</td>
<td>moderately well drained</td>
<td>>80</td>
<td>25-32</td>
<td>0.5</td>
</tr>
<tr>
<td>Xerocrepts & Haploxerolls</td>
<td>B</td>
<td>well drained</td>
<td>>80</td>
<td>>80</td>
<td>2</td>
</tr>
<tr>
<td>Xerocrepts-rock outcrop</td>
<td>B</td>
<td>well drained</td>
<td>>80</td>
<td>>80</td>
<td>2</td>
</tr>
</tbody>
</table>
4.08.4 Simplified LIDA Sizing

a. Simplified sizing may be used for LIDA where the contributing impervious area to an individual water quality approach is no greater than 15,000 square feet.

b. Water Quality Sizing: Surface Area (applies to facilities in Section 4.05.3.c.1(D)-(I))

A 6% sizing factor shall be used to calculate the required water quality surface area of the selected treatment facility. A sizing factor of 6% assumes the site infiltration rate is less than 2 inches/hour.

c. Hydromodification Sizing:

A 12% sizing factor shall be used to calculate the required vegetated surface area of the selected LIDA facility to meet both the hydromodification and water quality requirement. A sizing factor of 12% assumes the site infiltration rate is less than 2 inches/hour. A site specific design for the site shall be required for any of the following situations:

d. Alternative Sizing:

A site specific design with an alternate sizing factor may be considered if:

1. On-site infiltration tests are performed at the soil depth of the proposed base of a LIDA facility, and the result of those tests show an infiltration rate that exceeds 2 inches per hour. An alternate sizing factor is used;

2. The impervious area contributing to an individual water quality approach is greater than 15,000 square feet; or

3. The treatment facility is used for quantity control.
c. Water Quality for Vegetated Corridor as a Filter Strip (applies to Section 4.05.3.c.14.04.3.c.1(J)).

The sizing of a Vegetated Corridor as a Filter Strip must meet all of the following criteria:

1. The maximum contributing impervious surface is 2,640 square feet, distributed uniformly across per 50 feet of adjacent Vegetated Corridor width.

2. The contributing impervious surface must be adjacent to the Vegetated Corridor, or within the outer 40% and approved as an allowed use consistent with the Service Provider Letter.

3. The minimum depth is three times the depth of the contributing impervious surface, or one single family residence. The depth of the Vegetated Corridor treatment area shall be measured from the edge of the Sensitive Area and in the direction of stormwater flow.

4.08.5 Water Quality Approach Standard LIDA Sizing methods

a. Water Quality Volumes and Flows (applies to approaches in Section 4.05.3.c.14.04.3.c (A)-(C))

1. Water Quality Storm
 The water quality storm is the storm required by regulations to be treated. The storm defines both the volume and rate of runoff. The water quality storm is defined in Subsection 4.05.4 (d)4.08.2.

2. Water Quality Volume (WQV)
 The WQV is the volume of water that is produced by the water quality storm. The WQV equals 0.36 inches over the impervious area that is required to be treated as shown in the formula below:

 \[
 \text{Water Quality Volume (cu.ft.)} = \frac{0.36 \text{ (in.)} \times \text{Area (sq.ft.)}}{12 \text{ (in./ft.)}}
 \]

3. Water Quality Flow (WQF)
The WQF is the average design flow anticipated from the water quality storm as shown in the formulas below:

\[
\text{Water Quality Flow (cfs)} = \frac{\text{Water Quality Volume (cu.ft.)}}{14,400 \text{ seconds}}
\]

or

\[
\text{Water Quality Flow (cfs)} = \frac{0.36 \text{ (in.) x Area (sq.ft.)}}{12 \text{ (in/ft)} \times 4 \text{ hr} 	imes 60 \text{ min/hr} 	imes 60 \text{ sec/min}}
\]

b. Sizing Infiltration LIDA for Hydromodification:

1. **Hydromodification Storm and Drawdown**

 A) Infiltration LIDA shall be designed to manage the 10-year, 24-hour storm in Subsection 4.08.2.b. and infiltrate this volume in 36 hours or less.

 B) Facilities that cannot meet this standard but that can provide partial infiltration are allowed. Overflow must be managed as described in Subsection 4.08.6.b.

2. **Hydromodification Volume**

 A) Infiltration design shall be assessed by dynamic flow routing through the facility or facilities to underlying soil. Documentation of the proposed design shall be included in the drainage report. Acceptable analysis programs include those listed below, as well as others using the SBUH or TR-55 methodology, provided the considerations outlined in Section 5.04.2 are followed.

 1. HEC-HMS
 2. SWMM
 3. City of Portland’s Presumptive Approach Calculator: facility must pass the Flow Control criteria
 4. TRUST interface to HSPF or site specific HSPF model with local climate and geographic data, as approved by the District
 5. Others as approved by the District

 B) Alternately, a facility may be sized to store the entire runoff volume from the design storm and subsequently drain as described above.
4.08.6 **Peak-Flow Matching** Hydraulic Design Criteria

a. **Peak-Flow Matching** Detention design shall be assessed by dynamic flow routing through the basin. Documentation of the proposed design shall be included in the drainage report. Acceptable analysis programs include those listed below, as well as others using the SBUH or TR-55 methodology, provided the considerations outlined in Section 5.04.2 are followed.

1. HYD
2. HEC-1
3. HEC-HMS
4. SWMM
5. HYDRA
6. Others as approved by the District

b. When required, for stormwater quantity management, a combination of on-site detention and infiltration approaches shall be used. Approaches shall be designed such that the post-development runoff rates from the site do not exceed the following pre-development target runoff rates from the site, based on 24-hour storm events ranging from the 2-year return storm to the 25-year return storm. Specifically, the 2, 10, and 25-year post-development runoff rates will not exceed their respective 2, 10, and 25-year pre-development runoff rates; unless other criteria are identified in an adopted watershed management plan or subbasin master plan.

<table>
<thead>
<tr>
<th>Post-Development Peak Runoff Rate</th>
<th>Pre-Development Peak Runoff Rate Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-year, 24-hour</td>
<td>2-year, 24-hour</td>
</tr>
<tr>
<td>10-year, 24-hour</td>
<td>10-year, 24-hour</td>
</tr>
<tr>
<td>25-year, 24-hour</td>
<td>25-year, 24-hour</td>
</tr>
</tbody>
</table>
c. When required as a hydromodification approach, a combination of on-site detention and infiltration approaches may be used. Approaches shall be designed such that the post-development runoff rates from the site do not exceed the following pre-development target runoff rates:

<table>
<thead>
<tr>
<th>Post-Development Peak Runoff Rate</th>
<th>New Impervious Areas: Pre-Development Peak Runoff Rate Target</th>
<th>Modified Impervious Areas: Pre-Development Peak Runoff Rate Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-year, 24-hour</td>
<td>50% of 2-year, 24-hour</td>
<td>50% of 2-year, 24-hour</td>
</tr>
<tr>
<td>5-year, 24-hour</td>
<td>5-year, 24 hour</td>
<td>80% of 5-year, 24-hour</td>
</tr>
<tr>
<td>10-year, 24-hour</td>
<td>10-year, 24-hour</td>
<td>80% of 10-year, 24-hour</td>
</tr>
</tbody>
</table>

e. When required because of an identified downstream deficiency, stormwater quantity on-site detention facilities shall be designed such that the peak runoff rates will not exceed pre-development rates for the specific range of storms where the downstream deficiency is evident.

g. Low impact development approaches, designed in accordance with this Chapter, can be utilized to meet all or part of any detention requirements on a site.
b. When Flow Duration Curve Matching Detention is required, stormwater discharges shall maintain the duration of high flows at their pre-development levels for flows greater than one-half of the 2-year peak flow to the 10-year peak flow. Projects that also require Water Quantity Control as described in Section 4.02 must also maintain the 25-year peak flow rate to the pre-development 25-year peak flow rate.

4.05 Pretreatment and Proprietary Treatment Systems
Section 4.05.7 moved to Section 4.07.1 and Section 4.05.8 moved to Section 4.07.8.

Reader Notes- Feb. 2019 Draft
Organizational Change- Information moved from Section 4.06.
Standards Change- Updated Water Quantity Facility to include hydromodification requirements. All Stormwater Management Approaches have a new subsection a, which is added to clarify when the approach is applicable.

4.0609 Water Quality Stormwater Management Approach Design and Facility Standards

4.0609.1 Water Quality Manholes

a. Application:
 1. Water Quality Pretreatment, used in combination with other stormwater management approaches to meet the requirements of this Chapter.

b. Hydraulic Criteria:
 1. Minimum Design Flow: Water Quality Flow per Section 4.05.6.a4.08.2
 2. Upstream flow splitter may be used to bypass conveyance flows in excess of the Water Quality Flow.

c. Design Criteria:
 1. Shall conform to CWS Standard Drawing No. 250 or an equivalent detail approved by the District or City.
 2. Minimum Manhole Diameter: 60-inch
 3. Maximum size of incoming pipe: 18-inch
 4. Sump Depth: No deeper than 5 feet from invert out to bottom of sump
 5. Volume of sump: 20 cubic feet/ 1.0 cfs of flow into the water quality manhole, up to the 25-year flow. Flow calculations shall include the effect of an upstream flow splitter.
 6. Maintain a 3-foot clear access zone between the inside structure and manhole walls.
7. Orient access to structure in a clear zone.

Reader Notes- Feb. 2019 Draft
Organizational Change- The entirety of Section 4.09.2 Subsections b) 9-11 have been relocated from 4.03.3 (c). No change to requirements.

4.09.2 Detention Pond

a. Applications
 1. Water Quantity
 2. Hydromodification
 3. LIDA

b. Sizing Criteria:
 1. Peak Flow Matching, per Section 4.08.6, is applicable in the following scenarios:
 A. Detention is required as a result of Quantity Control Requirements outlined in Section 4.02
 B. Peak Flow Matching Detention is required as a result of Hydromodification Requirements identified in Table 4-2.
 2. Flow Duration Curve Matching, per Section 4.08.7, is required when identified as the applicable Hydromodification Requirement in Table 4-2.

bc. Design Criteria:
 1. The facility can be a combined water quality and quantity facility provided it meets all relevant criteria.
 2. Interior side slopes up to the Maximum Water Surface: 3H:1V or flatter.
 3. If interior slopes need to be mowed side slope: 4H:1V or flatter.
 4. Exterior Side Slopes: 2H:1V or flatter, unless analyzed for stability by a geotechnical engineer.
 6. Provide an approved outlet structure for all flows.
 7. Certain situations require use of multiple orifice plates to achieve desired outflow rates.
 8. **Maximum ponding depth: 5 ft**
 9. A pond overflow system shall provide for discharge of the design storm event without overtopping the pond embankment or exceeding the capacity of the emergency spillway.
10. Provide an emergency spillway sized to pass the 100-year storm event or an approved hydraulic equivalent. Emergency spillway shall be located in existing soils when feasible and armored with riprap or other approved erosion protection extending to the toe of the embankment.

11. Construction of on-site detention shall not be allowed as an option if such a detention facility would have an adverse effect upon receiving waters in the basin or subbasin in the event of flooding, or would increase the likelihood or severity of flooding problems downstream of the site.

Reader Notes- Feb. 2019 Draft

Standards Change- District is continuing to evaluate, and discuss with member jurisdictions, the potential for expanded use of underground detention.

4.09.2 Underground Detention

Reader Notes- Feb. 2019 Draft

Standards Change- Requirement for river rock removed to reflect current practices.

4.0609.23 Vegetated Swale

a. **Applications**

b. **Hydraulic Design Criteria**

1. Design Flow: Water Quality Flow per Section 4.05.6.a 4.08.5
2. Minimum Hydraulic Residence Time: 9 minutes
3. Maximum Water Design Depth: 0.5 feet
4. Minimum Freeboard: 1.0 foot (for facilities not protected from high flows)
5. Manning “n” Value: 0.24
6. Maximum Velocity: 2.0 fps based on 25-year flow

bg. **Design Criteria**

1. Provide an energy dissipater at the entrance to the swale, with a minimum length of 4 feet. It will be designed to reduce velocities and spread the flow across the treatment cross section.
2. The use of intermediate flow spreaders may be required.
3. Minimum Length: 100 feet
4. Minimum Slope: 0.5%
5. Minimum Bottom Width: 2 feet
6. Maximum Treatment Depth (measured from top of media): 0.5 feet
7. Side Slope:
 A) In Treatment Area: 4H:1V or flatter
 B) Above Treatment Area: 2.5H:1V or flatter
8. The treatment area shall have 2”-¾” river run rock placed 2.5 to 3 inches deep on coconut matting over 12 inches of topsoil or base stabilization method as approved by the District or City. Extend topsoil and coconut matting to the top of the top of the slope.
9. Provide an approved outlet structure for all flows.
10. Where swales wrap 180-degrees forming parallel channels, freeboard shall be provided between each of the parallel channels. A 1-foot (above ground surface) wall may be used above the treatment area to provide freeboard while enabling a narrower system. As an alternative, a soil-based berm may be used. The berm shall have a minimum top width of 1 foot and 2.5H:1V or flatter side slopes.
11. Where swales are designed with ditch inlets and outlet structures and design of maintenance access to such structures may be difficult due to swale location, swales may be designed as flow-through facilities with unsumped structures. Maintenance access to one end of the facility will still be required.

Reader Notes- Feb. 2019 Draft
Standards Change- Requirement for river rock removed to reflect current practices.

4.0609.34 Extended Dry Basin

a. Applications
 1. Water Quality

b. Hydraulic Design Criteria:

 1. Permanent Pool Depth: 0.4 feet
 2. Permanent pool is to cover the entire bottom of the basin.
 3. Minimum Water Quality Detention Volume: 1.0 x Water Quality Volume (WQV)
 4. Water Quality Drawdown Time: 48 hours
 5. Orifice Size:
 USE: \[D = 24 \times \left(\frac{Q}{(C[2gH]^{0.5}) / \pi} \right)^{0.5} \]
 Where:
 \(D \) (in) = diameter of orifice
 \(Q(\text{cfs}) = \frac{\text{WQV}(\text{cf})}{(48\times60\times60)} \)
 \(C = 0.62 \)
 \(H(\text{ft}) = \frac{2}{3} \times \text{temporary detention height to centerline of orifice.} \)
 6. Maximum Depth of Water Quality Pool (not including Permanent
Pool): 4 feet or as limited by issuing jurisdiction.

bc. Design Criteria:

1. Provide a stilling basin designed to dissipate outfall energy and spread flows.
2. Inlet and outlet structures shall be designed to avoid direct flow between structures without receiving treatment (i.e. short circuiting of flow).
3. Minimum Bottom Width: 4 feet
4. Side Slopes in Basin Treatment Area: 3H:1V
5. Minimum Freeboard: 1 foot from 25-year design water surface elevation.
6. The treatment area shall have coconut matting over 12 inches of topsoil or base stabilization method as approved by the District or City. If required by the District or City, 2”-¾” river run rock shall be placed 2.5 to 3 inches deep in areas where sustained flow is anticipated to occur. Extend topsoil and coconut matting to the top of the slope.
7. Provide an approved outlet structure for all flows.
8. The Engineer shall certify that the pond storm sewer design is in compliance with Chapter 5 and that at normal design water surface that the upstream storm sewer will not be in a surcharged condition for longer than 24 hours.

4.0609.45 Constructed Water Quality Wetland

a. Applications
 1. Water Quality

b. Hydraulic Design Criteria:

1. Permanent Pool Volume: 0.55 x Water Quality Volume (WQV)
2. Water Quality Detention Volume: 1.0 x Water Quality Volume (WQV)
3. Water Quality Drawdown Time: 48 hours
4. Orifice Size:
 USE: \[D = 24 \times \left(\frac{Q}{C[2gH]^{0.5}} \right) / \pi \] ^{0.5}
 Where:
 \(D \) (in) = diameter of orifice
 \(Q \) (cfs) = WQV(cf) / (48 * 60 * 60)
 \(C = 0.62 \)
 \(H \) (ft) = 2/3 x temporary detention height to centerline of orifice.
5. Maximum Depth of Permanent Pool: 2.5 feet or as limited by issuing jurisdiction
6. Maximum velocity through the wetland should average less than
0.01-fps for the water quality flow. Design should distribute flows uniformly across the wetland.

7. Provide for a basin de-watering system with a 24-hour maximum drawdown time.

bg. Design Criteria:

1. Provide a stilling basin designed to dissipate outfall energy and spread flows.
2. Permanent pool depth to be spatially varied throughout wetland.
3. Provide a perimeter zone 10 to 20 feet wide, which is inundated during storm events.
4. Side Slopes for Wetland Planting: 5H:1V or flatter
5. Side Slopes for Non-Wetland Planting: 3H:1V or flatter
6. Over-excavate by a minimum of 20 percent to allow for sediment deposition.
7. Minimum Freeboard: 1 foot from 25-year design water surface elevation.
8. The treatment area and exposed side slopes shall be stabilized with coconut matting to the top of the slope.
9. Provide an approved outlet structure for all flows.

4.0609.56 Structural Infiltration Planter

a. Applications

1. Water Quality
2. Hydromodification
3. LIDA

b. Hydraulic Design Criteria

1. **Sizing:** Design Flow: Water Quality Surface Area, Simplified LIDA Sizing per Section 4.05.6.b4.08.4 or Standard LIDA Sizing per Section 4.08.5
2. Maximum Water Design Depth: 0.5 feet.

bg. Design Criteria

1. Provide pretreatment when contributing impervious area is greater than 15,000 square feet.
2. Provide an energy dissipater at the outfall designed to reduce scour.
3. Minimum Bottom Width: 30 inches regardless of shape.
4. Minimum Length: to be calculated based on incoming flows.
5. Maximum Slope: 0.5% in any direction.
6. Minimum Cross-sectional Depths:
 A) Growing Medium: 18 inches
B) Choker Course: 3 inches
C) Drain Rock: 9 inches

7. Provide an approved outlet (overflow) structure for all flows. Piping to a minimum of the plumbing code or to convey the 25-year storm.

8. If using the native soil infiltration for sizing, the rate shall be determined by ASTM standard testing methods.

9. Construction practices must be used to protect the infiltration capacity of native soils, or re-establish native infiltration capacity through soil amendment or mechanical means.

10. Rain drains and overflow structure to maintain maximum linear separation.

11. Building jurisdiction approval required for building setback distance and impermeable liners.

12. Vegetation quantities per 100 square feet:
 A) 115 herbaceous plants, 1 foot on center spacing, ½-gallon container size; or
 B) 100 herbaceous plants, 1 foot on center, and 4 shrubs, 1-gallon container size, 2 feet on center.

13. Treatment area shall have coconut matting over the entire surface, or District approved equivalent.

14. Refer to the LIDA Handbook for additional guidance.

4.0609.67 Non-Structural Infiltration Planter (Rain Garden)

a. Applications

1. Water Quality
2. Hydromodification
3. LIDA

ab. Hydraulic Design Criteria

1. Minimum Design Flow Sizing: Impervious Surface Area Simplified LIDA Sizing per Section 4.05.6.b4.08.4 or Standard LIDA Sizing per Section 4.08.5
2. Minimum Freeboard: 6 inches

bc. Design Criteria

1. Provide pretreatment when contributing impervious area is greater than 15,000 square feet.
2. Minimum length: Facility length to be calculated based on incoming flows and facility width, and on shape of facility.
3. Maximum slope: Planters are designed to evenly distribute and filter flows. Surface longitudinal slopes should be less than 0.5%
4. Minimum Bottom Width: 30 inches
5. Maximum Treatment Depth (measured from top of soil medium):
0.5 foot.

6. Minimum Cross-Sectional Depths:
 A) Growing medium: 18 inches
 B) Choker course: 3 inches
 C) Drain rock: 9 inches

7. Maximum Side Slopes: 3H:1V

8. Flow dissipaters should be used if entry slope to the basin is greater than 3:1 or for sheet flow in landscape filter strips. Flow dissipaters shall be constructed out of rock or gravel per design flow velocity at entry of the facility.

9. Provide an approved outlet (overflow) structure for all flows. Piping to a minimum of the plumbing code or to convey the 25-year storm.

10. If using the native soil infiltration for sizing, the rate shall be determined by ASTM standard testing methods.

11. Construction practices must be used to protect the infiltration capacity of native soils, or re-establish native infiltration capacity through soil amendment or mechanical means.

12. Rain drains and overflow structure to maintain maximum linear separation.

13. Building jurisdiction approval required for building setback distance and impermeable liners.

14. Vegetation quantities per 100 square feet:
 A) 115 herbaceous plants, 1 foot on center spacing, ½-gallon container size; or
 B) 100 herbaceous plants, 1 foot on center, and 4 shrubs, 1-gallon container size, 2 feet on center.

15. Treatment area shall have coconut matting over the entire surface, or District approved equivalent.

16. Refer to the LIDA Handbook for additional guidance.

4.0609.78 Flow-through Planter

a. Applications
 1. Water Quality
 2. LIDA

b. Hydraulic Design Criteria

 1. Design Flow Sizing: Impervious Surface Area Simplified LIDA Sizing per Section 4.05.6.b 4.08.4
 2. Minimum Freeboard: 2 inches

bc. Design Criteria

 1. Provide pretreatment when contributing impervious area is greater than 15,000 square feet.
2. Minimum length: Facility length to be calculated based on incoming flows and facility width.
3. Maximum slope: Planters are designed to evenly distribute and filter flows. Surface longitudinal slopes should be less than 0.5%.
4. Minimum Width: 30 inches
5. Maximum Treatment Depth (measured from top of soil medium): 0.5 feet
6. Minimum Cross-Sectional Depths:
 A) Growing medium: 18 inches
 B) Choker course: 3 inches
 C) Drain rock: 9 inches
7. Provide an energy dissipater at the entrance to the planter. It will be designed to reduce velocities and prevent scour.
8. Provide an approved outlet (overflow) structure for all flows.
9. Rain drains and overflow structure to maintain maximum linear separation.
10. Building jurisdiction approval required for: building setback distance, impermeable liner, structural wall and when depth of the facility is below the building footing.
11. The sides and bottom of the facility will be lined to prevent infiltration. Approved impermeable layers include waterproof coated concrete and 60 mil PVC liner
11. A perforated pipe system under the planter drains water that has filtered through the topsoil to prevent long-term ponding.
12. Vegetation quantities per 100 square feet:
 A) 115 herbaceous plants, 1 foot on center spacing, ½-gallon container size; or
 B) 100 herbaceous plants, 1 foot on center, and 4 shrubs, 1-gallon container size, 2 feet on center.
13. Refer to the LIDA Handbook for additional guidance.

4.0609.89 LIDA Swale

a. Applications
 1. Water Quality
 2. LIDA

b. Hydraulic Design Criteria
 1. Design Flow Sizing: Impervious Surface Area Simplified LIDA Sizing, per Section 4.05.6.b.08.4
 2. Minimum Freeboard: 6 inches

b. Design Criteria
 1. Provide minimum 18 inch sumped inlet with a minimum 18 inch
diameter drain basin for pretreatment.
3. Slope: At least 0.5% and no more than 6%. LIDA Swale not recommended for longitudinal slopes greater than 2%. On street-side swales, slope to match street.
4. Minimum Bottom Width: 24 inches
5. Maximum Treatment Depth (measured from top of soil medium): 0.5 feet
6. Side Slope
 A) With 1 foot shelf: 3H:1V
 B) Without 1 foot shelf: 4H:1V
7. Minimum Cross-Sectional Depths:
 A) Growing medium: 18 inches
 B) Choker course: 3 inches
 C) Drain rock: 9 inches
8. Inflow structure to be provided per location jurisdiction and approved District structure types.
9. Provide an energy dissipater at the entrance to the swale. It will be designed to reduce velocities and spread flow across the treatment cross section.
10. Provide an approved overflow structure sized to jurisdictional plumbing code or to convey the 25-year storm.
11. Check dams will be provided for slopes in excess of 5%.
12. Street-side swales will have a 30 mil impermeable liner, or approved equivalent per jurisdictional road authority, along the street-side.
13. Vegetation quantities per 100 square feet:
 A) Treatment Area: 115 herbaceous plants, 1 foot on center spacing, ½-gallon container size; or 100 herbaceous plants, 1 foot on center, and 4 shrubs, 1-gallon container size, 2 feet on center.
 B) Vegetation to be used in the swale bottom conforms to plantings approved for the wet moisture regime.
 C) Vegetation to be used along the swale side conforms to plantings approved for the moist moisture regimes.
14. Treatment area shall have high density jute or coconut matting over the entire surface or other base stabilization method as approved by the District.
15. Refer to the LIDA Handbook for additional guidance.

4.0609.910 Street-side Planter

a. Applications
 1. Water Quality
 2. LIDA
b. Hydraulic Design Criteria

1. **Design Flow Sizing:** Impervious Surface Area Simplified LIDA Sizing per Section 4.05.6.b4.08.4
2. Minimum Freeboard: 2 inches

b. Design Criteria

1. Provide minimum 18 inch sumped inlet with a minimum 18 inch diameter drain basin for pretreatment.
2. Minimum length: Facility length to be calculated based on incoming flows and facility width.
3. Maximum slope: Planter shall be flat bottom in all directions to within 1 inch. Check dams shall be placed according to individual project plans per detail 406 in the LIDA Handbook.
4. Minimum Bottom Width: 30 inches. 6 feet typical
5. Minimum Treatment Depth: 4-inch pond depth with 2 inches compost mulch
6. Maximum Treatment Depth (measured from top of soil medium): 18 inches
7. Minimum Cross-Sectional Depths:
 A) Growing medium: 18 inches
 B) Choker course: 3 inches
 C) Drain rock: 15 inches
8. Inflow structure to be provided per approved District structure types.
9. Provide minimum 6-inch wide splash rock around inlet structure to reduce velocities and spread flow across the treatment cross section.
10. Provide an approved overflow structure sized according to detail 795.1 in the LIDA Handbook.
11. Inlet/outlet elevations to allow overflow to drain to street or piped overflow system as applicable.
12. Minimum of 4 feet of 8-inch perforated drain pipe required to direct flows to overflow conveyance.
 A) Unlined facilities: bottom of pipe shall be set at 2 ½ inches above subgrade.
 B) Lined facilities: Bottom of pipe shall be set at the base of the drain rock layer
13. 30 mil impermeable liner or approved equal shall be used if required on project plans per road authority.
14. Vegetation quantities per 100 square feet: 115 herbaceous plants, 1 foot on center spacing, ½-gallon container size; or 100 herbaceous plants, 1 foot on center, and 4 shrubs, 1-gallon container size, 2 feet on center.
15. Refer to the LIDA Handbook for additional guidance.

4.0609.1011 Landscape Filter Strip

a. Applications
 1. Water Quality
 2. LIDA

b. Hydraulic Design Criteria
 1. **Design Flow Sizing:** Impervious Surface Area Simplified LIDA Sizing per Section 4.05.6.b4.08.4
 2. Flows must be distributed in uniform sheet flow that will not cause channelization or erosion.

b. Design Criteria
 1. Provide pretreatment when contributing impervious area is greater than 15,000 square feet, or when flows are concentrated within conveyance system prior to sheet flow distribution.
 2. Slope: At least 0.5% and no more than 6%
 3. Minimum Width: 5 feet, measured in direction of flow.
 4. Minimum Amended Growing Medium Depth: 18 inches
 5. A grade board, spreader, or sand/gravel trench may be required to disperse the runoff evenly across the filter strip to prevent point of discharge/channelization.
 6. Check dams shall be placed according to the facility design and:
 A) Equal to the width of the filter
 B) Placed every 10 feet where slope exceeds 5%, 2.5 to 3 inches deep.
 7. Collection and conveyance of overflow from filter strip shall be specified on plans to the approved public conveyance system.
 8. Entire filter strip must have 100% coverage by approved native grasses, wildflower blends, ground covers or any combination thereof.
 9. Coconut matting shall cover the growing medium except in check dam and flow spreader locations.
 10. Refer to the LIDA Handbook for additional guidance.

4.0609.1112 Vegetated Corridor as a Filter Strip

a. Applications
 1. Water Quality
 2. LIDA
b. Hydraulic Design Criteria

1. **Design Flow Sizing**: Water Quality Vegetated Corridor Simplified LIDA Sizing per Section 4.05.6.e4.08.4.
2. Flows must be distributed in uniform sheet flow that will not cause channelization or erosion.

b. Design Criteria

1. Provide pretreatment when contributing impervious area is greater than 15,000 square feet, or when flows are concentrated within a conveyance system prior to sheet flow distribution.
2. A grade board, spreader, or sand/gravel trench may be required to disperse the runoff evenly across the vegetated area.
3. Slope: At least 0.5% and no more than 6%
4. Vegetation: the vegetated corridor shall be enhanced to Good Corridor condition in accordance with Appendix A, Planting Requirements.

4.09.13 Green Roofs

a. Applications

1. LIDA
2. Reduction in impervious surface, which results in reduction in sizing for Water Quality, Quantity, and Hydromodification

b. Sizing: Green Roofs replace conventional impervious roof area at a 1:1 ratio.

c. Design Criteria:

1. Growing Medium: 3-4 inches or more lightweight mix designed for plant growth. Typical components include pumice, perlite, organic fiber, expanded slate, diatomaceous earth, or polymers.
2. Drainage: collection and conveyance of excess water shall be specified on plans with connection to an approved discharge location.
3. Slope: 4:12 (3H:1V slope) maximum roof pitch, unless alternate design addresses runoff retention and erosion control.
4. Vegetation: 90% plant coverage, with at least 70% evergreen species within 2 years of establishment. Typical species include sedum, ice plant, blue fescue, sempervivum and creeping thyme.
6. Structural Design: Site specific evaluation of the facility, saturated weight of all components, waterproof membrane, and root barrier must be complete and is subject to approval by appropriate building department.

7. Refer to LIDA Handbook for additional guidance.

4.09.14 Porous Pavement

a. Applications
 1. LIDA
 2. Reduction in impervious surface, results in reduction in sizing for Water Quality, Quantity, and Hydromodification

b. Sizing: Porous Pavement replaces conventional impervious pavement area at a 1:1 ratio.

c. Design Criteria:
 1. Surface Material: Porous asphalt, concrete, or pavers may be used
 2. Choker Course: place 2” minimum depth layer of clean, crushed ¾” to ¼” drain rock between surface material and aggregate base
 3. Aggregate Base: Clean, crushed 3/4” to 2” uniformly graded aggregate must be designed to provide a subsurface reservoir for infiltration and detention storage
 4. Drainage: collection and conveyance of excess water shall be specified on plans with connection to an approved discharge location.
 5. Slope: 20H:1V maximum slope, unless alternate design addresses runoff retention and erosion control:
 6. Subgrade: Avoid compaction of the subgrade and scarify soils to promote infiltration
 7. Structural Design: Site specific design of the pavement cross-section based on site conditions and loading requirements must be complete approved by appropriate building or transportation department
 8. Refer to LIDA Handbook for additional guidance.

4.09.15 Stormwater Tree

a. Applications
 1. LIDA
 2. Retention or planting of a Stormwater Tree, which results in reduction of impervious area for the purposes of sizing reduction for Water Quantity and sizing reduction or minimum LIDA for Hydromodification
b. Sizing:
 1. Retained Evergreen Tree: at least 6” diameter at breast height (DBH; measured 50” above the ground surface), providing an area credit of 20% of the canopy area or a minimum of 100 sq. ft.
 2. Planted Evergreen Tree: at least 5 feet tall at planting, providing area credit of 50 sq. ft.
 3. Retained Deciduous Tree: at least 6” diameter at breast height (DBH; measured 50” above the ground surface), providing an area credit of 10% of the canopy area or a minimum of 50 sq. ft.
 4. Planted Deciduous Tree: at least 1.5 inch DBH, providing area credit of 20 sq. ft.
 5. Canopy area shall be measured as the area within the tree drip line. Overlapping canopy areas shall be apportioned between multiple trees to avoid double counting of canopy area.

d. Eligibility Criteria:
 1. Trees protected and described as Stormwater Tree on approved plans, and with Maintenance Agreement.
 2. Trees located in non-buildable Tracts

e. Non-eligibility List:
 1. Tree located within the Sensitive Area or Vegetated Corridor
 2. Street trees. (May be combined with structural soils for credit based on structural soil volume.)
 3. Trees on individual residential lots

4.09.16 Structural Soils

a. Applications
 1. Hydromodification, if subsurface infiltration is allowable and post-construction infiltration rates are at least 0.2 inches/hour.
 2. LIDA

b. Hydraulic Criteria:
 1. Sizing: larger of 1) as needed to support any intended vegetation or 2) to manage the 10-year 24-hour storm such that post-development peak flow is less than or equal to pre-development peak flow.
 2. Assume porosity: 20%

c. Design Criteria:
 1. Structural soil shall be composed of 80% by weight crushed gravel graded to ¾ -1-½: 20% by weight clay loam (>20% clay). Additives to improve water retention properties may substitute for <2% of clay loam. Loam may be used in portions of the structure that are not load bearing (e.g., to cover tree roots at the surface of a tree well).
 2. Provide pretreatment when contributing impervious area is greater than 15,000 square feet.
3. Provide an energy dissipater at the inflow and outfall designed to reduce scour.
4. Minimum Bottom Width: 30 inches.
5. Minimum Length: Facility length to be calculated based on hydraulic criteria and facility width.
6. Minimum Depths:
 A) Supporting trees: 36 inches
 B) Supporting pervious surface: 15 inches
7. Bed and sides of structural soil well to be scarified before placement of structural soils as needed to maintain post-construction infiltration rate of 0.2 in/hr.
8. Provide an approved outlet (overflow) structure for all flows. Piping to a minimum of the plumbing code or to convey the 25-year storm.
9. Building jurisdiction approval required for building setback distance and impermeable liners.
10. Refer to Street-side planter facility requirements (Section 4.09.11) and guidance in the LIDA Handbook for use in street-side setting.